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ABSTRACT 
 

In this paper, a review is provided for the optimal analysis of structures using the graph 

theoretic force method. An analysis is defined as “optimal” if the corresponding structural 

matrices (flexibility or stiffness) are sparse, well-structured, and well-conditioned. An 

expansion process together with the union-intersection theorem is utilized for generating 

subgraphs, forming a special cycle basis, corresponding to highly localized self equilibration 

systems. Admissibility checks are used in place of the more common independence checks 

to speed up the formation of the basis. An efficient solution requires organizing the non-zero 

entries into various well-defined patterns. Algorithms are provided to form matrices having 

banded matrices and small profiles. Though the paper considers mainly skeletal structures, 

the presented concepts are easily extensible to other finite element models. References for 

such generalizations have been provided. A brief review of swift analysis methods that skirt 

the harder problem of matrix conditioning is also provided. The iterative nature of optimal 

structural design via metaheuristic algorithms rewards any speedup in the analysis process. 

This review recommends utilizing the force method instead of the alternative displacement 

method to achieve said speedup. The work concludes with a discussion of future challenges 

in the field of optimal analysis. 
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1. INTRODUCTION 
 

The main tools for structural analysis consist of equilibrium of forces, compatibility of 

displacements and force-displacement relationships. There are mainly two methods for the 

analysis of structures consisting of the displacement method and the force method. 

In the displacement method, one assumes the compatibility to hold and then proceeds to 

satisfy equilibrium, while in the force method, one assumes the equilibrium to hold and then 

proceeds to satisfy the compatibility. These methods are known as dual approaches, Argyris 

and Kelsey [1] and Henderson [2]. 

In the following diagram (Fig. 1), the inter-relation between analysis and design is 

illustrated. A structure under external effects, constituting external loads, temperature 

changes and support settlements is analyzed. Once the internal forces have been calculated, 

the resulting stresses can be obtained. Subsequently, one carries out the design step for the 

used materials and the dimensions and/or topology (connectivity) of the structure are 

modified. This process is repeated until all the design requirements are met. 
 

 
Figure 1: The relationship between structural analysis, stress analysis, and structural design 

 

In the following diagram (Fig. 2) a structure is subjected to loads. Analysis is performed 

either by the force (flexibility or compatibility) method or the displacement (stiffness or 

equilibrium) method. 

In the force method, first the forces are calculated and then the displacements are 

obtained (red arrows). While in the displacement method, first the displacements are 

evaluated and then the internal forces are obtained (blue arrows). 
 

 
Figure 2: Two dual methods for structural analysis 
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After the Introduction section, the paper includes a brief explanation of the optimal 

analysis in Section 2. The sparsity of structural matrices and its application to skeletal 

structures, and an efficient method for the force method of frame structures are explained in 

Section 3. Nodal ordering with the goal of producing well-structured matrices, bandwidth 

reduction and its extension to profile reduction are the focus of Section 4. The subsequent 

Section 5 proposes a method for selecting well-conditioned structural matrices. Though the 

method is used for the force method, it can easily be extended to the displacement approach. 

Swift analysis of symmetric and regular structures is briefly presented in Section 6, followed 

by a discussion on the optimal analysis for optimal design in Section 7. Here, the force 

method is suggested for structures having a lower static degrees of indeterminacy compared 

to their kinematic degree of indeterminacy. A compilation of our conclusions is presented in 

the final section. References for basic necessary concepts and definitions are included in 

Appendix A, followed by the proof of the “union-intersection theorem” provided in 

Appendix B. 

 

 

2. OPTIMAL ANALYSIS OF STRUCTURES 
 

If the structural matrices (flexibility or stiffness), resulting from the analysis of a structure, 

have the following properties: 

 

• Sparse (having a high percent of zero entries), 

• Well-structured (non-zero entries are positioned in a special pattern), 

• Well-conditioned (having small off-diagonal terms compared to diagonal terms), 

 

then, the analysis will be considered an Optimal Analysis. 

Though the above properties have been separately studied by many researchers, the 

term “optimal analysis” is defined in Kaveh [3] and the collective study of the above 

properties is published in Refs. [4-6], and books [7-9]. It should be noted that this term is 

quite different from “optimal design of structures”, where mathematical programming and/or 

metaheuristic algorithms are utilized. 

 

2.1. Sparsity 

Sparsity is an important and well-established subject in the fields of mathematics, 

science and engineering. In mathematics, the sparsity of a matrix is usually given, and the 

goal is to solve the corresponding equations efficiently, Tewarson [10], Pissanetzky [11], 

and Duff et al. [12]. Conversely, in engineering, the problems are solved such that the 

resulting structural matrices become sparse, i.e. having a lower number of non-zero entries 

Henderson [2], Henderson and Maunder [13], Maunder [14], Kaveh [4, 7], Cassell et al. 

[15]. Typical sparse and non-sparse matrices corresponding to the analysis of identical frame 

structure are illustrated in Fig. 3. 
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   (a) Sparse matrix              (b) Non-sparse matrix 

Figure 3:  Examples of a sparse matrix and a non-sparse matrix. 

2.2. Well-structured Matrices 

Once the number of entries of a matrix is reduced, an efficient solution requires 

organizing the non-zero entries into various well-defined patterns. Depending on the method 

to be used for the solution, these patterns should be different. The number of such patterns 

can be extensive and here only some well-known patterns utilized in Gaussian elimination, 

skyline method, substructuring, and frontal method are shown (Fig. 4). Methods for 

patterning structural matrices are developed by Kaveh [4-7] and others. 

 

 
 

(a) Banded form  (b) Profile form  (c) Partitioned form  (d) Nested form  (e) Frontal form 

Figure 4: Different patterns of well-structured matrices for the solution of sparse matrices 

 

There are many other well-structured matrices such as three-diagonal matrices, five-

diagonal matrices, block diagonal matrices, block diagonal matrices with corner blocks, 

which require special ordering and often occur in symmetric, cyclically symmetric and 

regular structures, Kaveh [8]. 
 

2.3. Well-conditioned Matrices 

Linear algebra and matrix algebra are the main tools for improving the conditioning of 

matrices. Methods for this purpose are developed by Shah [16], Goodspeed and Martin [17] 

who employed the substructuring technique for improving the conditioning of stiffness 

matrices. Kaveh [18] and Cassell [19] developed graph theoretic methods for improving the 

conditioning of flexibility matrices and Kaveh and Ghaderi [20] presented efficient methods 

for improving the conditioning of the stiffness matrices of skeletal structures. A typical well-

conditioned matrix having dominant diagonal entries is shown in Fig. 5. 
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Figure 5: A well-conditioned symmetric matrix with dominant diagonal entries 

 

In subsequent sections, the progress made in providing the three aforementioned 

properties, required for optimal analysis, are discussed in detail. 

 

 

3. FORMATION OF SPARSE STRUCTURAL MATRICES 
 

The flexibility and stiffness matrices are pattern-equivalent to cycle adjacency and cut set 

adjacency matrices, respectively. While there is a special cut set basis known as a co-cycle 

basis which can be used for generating equilibrium equations around the structural nodes, 

such a suitable simple cycle basis is not available in the force method. This is why this 

section will be devoted to the formation of cycle basis corresponding to sparse flexibility 

matrices. 

The “generalized cycle basis” has been developed for the analysis of skeletal structures 

(planar trusses, space trusses, planar frames and space frames) using the force method, 

Kaveh [3,5,7]. For frame structures suitable cycle basis is due to Henderson [2]. Henderson 

and Maunder [12] developed valuable topological concepts for the manual selection of cycle 

bases leading to sparse flexibility matrices for frame structures. Kaveh made extensive 

contributions to computer methods for the formation of subminimal cycle bases [21-23]. An 

efficient program can be found in Kaveh [24]. This idea has been extended to the formation 

of suboptimal cycle bases in [25]. In this section an algorithm is provided using these 

concepts [4]. 

 

3.1. Generalized Cycle Bases of a Graph 

In this section, S is considered to be the graph model of a skeletal structure. For the 

function (S) = aM(S) + bN(S) + c0(S) associated with the corresponding structure, the 

coefficients b and c are assumed to be integer multiples of the positive coefficient a, with 

M(S), N(S) and 0(S) being the number of members, nodes and components of the structural 

model. Here, only those coefficients provided in Table 1 are of interest. 

More general functions applicable to degrees of static and kinematic indeterminacies are 

also defined for skeletal structures and finite element models [3,4]. 

 

3.1.1. Definitions 

In this section, some concepts of graph theory are generalized in order to unify the 

optimal force method analysis for planar and space trusses and planar and space frames.  
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Table 1: Coefficients of (S) for different types of skeletal structures. 

 

 

Definition 1:  An elementary subgraph is defined as a subgraph which does not contain any 

subgraph Si´  Si with (Si´) > 0. A connected subgraph T of S containing all the nodes of S 

is called a spanning -tree if (T) = 0 and it is rigid. The word “rigid” is important and 

essential for the definition to be true. For (Si) = b1(Si), a -tree changes to a tree as defined 

in graph theory. 

A structural model as a -tree, becomes statically determinate when (S) describes the 

degree of static indeterminacy (DSI) of the structure. The ensuing stress resultants can 

uniquely be obtained everywhere in the structure by pure equilibrium. Three -trees 

corresponding to different functions are shown in Fig. 6. 

 

(a) (S)=3M−3N+3.                    (b) (S)=M−2N+3.                  (c) (S)=M−3N+6. 

Figure 6: Examples of different -trees. 

 

It should be mentioned that (T) = 0 does not guarantee the rigidity of a -tree. For 

example, both graph models illustrated in Fig. 7 satisfy the condition (T) = 0; however, 

none of these trusses are rigid. Rigidity is extensively studied by graph theoretic methods by 

mathematicians and the interested reader can refer to Refs. [26-28]. However, only methods 

for controlling the rigidity of planar trusses have been developed by Lovász and Yemini [29] 

and Sugihara [30]. For space trusses with special configuration only some partial results are 

available, 

Definition 2: A member of S − T is called a   -chord of T. The collection of all the -

chords of a -tree is known as the -cotree of S. 

Definition 3: A removable subgraph Sj of a graph Si, is an elementary subgraph for 

which (Si − Sj)  = (Si), i.e. the removal of Sj from Si does not alter its degree of static 

indeterminacy. A -tree of S containing two specified nodes, that has no removable subgraph 

is called a -path between these two nodes. 

Type of structure a b c 

Plane truss +1 −2 +3 

Space truss +1 −3 +6 

Plane frame +3 −3 +3 

Space frame +6 −6 +6 
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As an example, the graphs shown in Fig. 8 are -paths between the two specified nodes 

ns and nt. 

 

(a)  (S)=M−2N+3.                             (b)  (S)=M−3N+6. 

Figure 7: Structures satisfying (T) = 0 which are not rigid. 

 

 

            (a)  (S)=(M−N+1).                   (b)  (S)=M−2N+3.             (c)  (S)=M−3N+6. 

Figure 8: Examples of -paths between two specified nodes ns and nt. 

 

Definition 4:  A connected rigid subgraph Ck of S with (Ck) = a, containing no removable 

subgraph is called a -cycle of S. The number of members of Ck, denoted by L(Ck), is called 

the length of Ck. Examples of -cycles are illustrated in Fig. 9. 

 

 

(a)  (S)=(M−N+1).               (b)  (S)=M−2N+3.                (c)  (S)=M−3N+6. 

Figure 9: Examples of -cycles considering different functions. 
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A -cycle is also defined as the underlying subgraph on which S.E.Ss can be constructed. 

For trusses one S.E.S. can be formed on a -cycle, while for the frame structures three or six 

S.E.Ss can be constructed on each -cycle, respectively. This definition is compatible with 

the above definition, however, one might be able to generate a -cycle for trusses using the 

later definition. 

Definition 5:  For mi being a -chord of T, the T  mi contains a -cycle Ci which is defined 

as a fundamental -cycle of S with respect to T. Using the Union-Intersection Theorem 

provided in Appendix B, it can easily be shown that 

(T mi) = 0 + (a+2b+c) − (2b+c) = a,  

indicating the existence of a -cycle in T  mi. For a rigid T, the corresponding fundamental 

-cycle is also rigid, since the addition of an extra member between the existing nodes of a 

graph cannot destroy the rigidity. A fundamental -cycle can be obtained by omitting all the 

removable subgraphs of T  mi. 

Definition 6: A maximal set of independent -cycles of S is defined as a generalized cycle 

basis (GCB) of S. Similarly, a maximal set of independent fundamental -cycles is called a 

fundamental generalized cycle basis of S. This basis will have dimension as (S) = (S)/a. 

For the following, example, a generalized cycle basis of a planar truss is illustrated in 

Fig. 10. 

 

Definition 7: A generalized cycle basis-member incidence matrix C is an (S)M matrix 

having entries as 0 and 1, where cij = 1 if -cycle Ci contains the member mj, and cij = 0 

otherwise. The generalized cycle adjacency matrix is defined as D which is an (S)(S) 

matrix. 

 

3.1.2. Minimal and optimal generalized cycle bases 

A generalized cycle basis C = {C1,C2,...,C(S)} is called minimal if it corresponds to a 

minimum value of: 

 L(C) = 


=

)S(

1i
i ).C(L  (1) 

The sparsity of matrix C, denoted by (C) is equal to the total number of selected cycle set, 

C denoted by L(C), A minimal GCB can be defined as a basis which corresponds to 

minimum number of non-zero entries of the matrix C. A GCB for which L(C) is near 

minimum is called a subminimal GCB of S. 

A GCB corresponding to maximal sparsity of the GCB adjacency matrix is called an 

optimal generalized cycle basis of S. If (CCt) does not differ considerably from its 

minimum value, then the corresponding basis is termed suboptimal. 
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(a) A planar truss S. 

 
(b) A generalized cycle basis of S. 

Figure 10:  A planar truss S, and the elements of a GCB of S. 

 

The matrix intersection coefficient i(C) of row i of the GCB incidence matrix C is the 

number of row j such that: 

 (a) j
 
{i+1,i+2,..., (S)}, 

 (b) Ci  Cj  ≠   , i.e. there is at least one k such that the column k of both -

cycles Ci and Cj (rows i and j) contain non-zero entries. 

 Now it can be shown that:  

(CCt) = (S) + 2 
−

=

1)S(

1i

j (C).                                                    (2) 
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This equation shows the correspondence of a GCB incidence matrix C and that of its GCB 

adjacency matrix. In order to minimize (CCt), the value of 
−

=

1)S(

1i

j(C) should be 

minimized, since (S) is a constant for a given structure S, i.e. -cycles with a minimum 

number of overlaps should be selected. 

Different algorithms are developed for the formation GCB, however, there are still 

computational problems which should be resolved [4,5]. Forming a -cycle for a general 

function in not an elementary problem, and choosing admissible -cycles is not an easy task. 

For a cycle basis, the problem becomes simplified as discussed in the following sections 

[4,5]. 
 

3.2. An Efficient Algorithm for the Formation of Subminimal Cycle Basis 

A simple expansion process has been used in structural analysis for the formation of 

simple trusses by Muller Breslau [31]. Kaveh generalized the idea to general skeletal 

structures [3] and finite element models [4]. In this expansion, the added subgraphs could be 

cycles, cut-sets, co-cycles, -cycles, or the subgraph model of substructures. 

 

3.2.1. Expansion for the formation of a cycle basis; graph theoretic method 

Consider an expansion process as,  

 

C1= C1 → C2 → C3 →… → C b1
(S) =S                                             (3) 

where b1(S) is the first Betti number of S. A cycle C k+1 is called an admissible cycle, if  

 

b1(Ck+1) = b1 (Ck  Ck+1) = b1 (Ck) + 1.                                           (4) 

A cycle basis can be generated by the above expansion process.  
 

It should be noted that in an expansion process an admissible cycle is independent of the 

previously selected cycles, but an independent cycle is not necessarily admissible. 

 

3.2.2. Minimal cycle on a member 

Formation of a shortest route tree: Two shortest route trees (SRTs) are generated from O 

and O’ in Fig.11. The contours are illustrated in dashed lines, see Appendix A. 

In order to generate a shortest length cycle Ci on a member mj, two SRTs are formed 

from the two end-nodes ns and nt. Soon these trees intersect at node nc. The backtracking to 

ns and nt is then performed. These two paths, together with mj form a shortest cycle on mj. 

One can also use a single SRT routed from ns (excluding mj), such that the generated subtree 

includes nt. Again, backtracking is performed and the generated path together with mj results 

in the formation of the shortest cycle on mj, Fig. 12. 
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Figure 11: Two shortest route trees generated from O and O’ 

 

 
Figure 12:  Generation of a minimal length cycle on a member mj 

 

3.2.3. An example of selecting admissible cycles as a basis by expansion 

A simple graph S with b1(S) = 5 is considered and a selection of 5 admissible cycles is 

performed as shown in Fig. 13. First, three 3-sided cycles are generated, followed by a 4-

sided cycle. Then another 3-sided cycle is formed. 

 

Figure 13:  Formation of a cycle basis using an expansion process 

 

After discussing the mathematical concepts which is involved in the generation of a 

subminimal cycle basis, it should be mentioned that different algorithms have been 
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developed by Kaveh [4-7] for the formation of a subminimal cycle basis. The following 

algorithm is the simplest and most informative algorithm. 
 

3.3. Algorithm (Kaveh 1974)  

• Step 1: Select a pseudo-centre node of maximal degree O. Such a node can be 

selected manually or automatically utilizing the graph or algebraic graph 

theoretical methods [3-5]. 

 

• Step 2: An SRT rooted at O can then be generated obtaining the set of its chords 

that should be ordered according to their distance from O.  

 

• Step 3: One minimal cycle on each chord should be formed in turn. A 

corresponding simple path is chosen which contains members of the tree and the 

previously employed chords. This provids the admissibility of the selected cycle. 

This method selects subminimal cycle bases, using the chords of an SRT. The nodes and 

members of the tree, and hence the cycles, are partially ordered according to their distance 

from O.  

Comparing this algorithm with simple algorithm of Kirchhoff [32] reveals the following 

improvements on the formation of fundamental cycle basis of a graph: 

 

1. Starting from the center of the graph reduces the length of the fundamental cycle 

compared to using an arbitrary spanning tree. 

 

2. Ordering the chords increases the sparsity of the cycle adjacency matrix and also 

helps to make well-structured flexibility matrices. This is an interesting situation 

where the sparsity and well-structuring are performed simultaneously. 

 

3. Adding the used chords to tree member allows the turn back and reduces the length 

of the selected cycle [21]. This method is the graph theoretic turn back method, that 

is extended to algebraic force method by Topcu [33], and Kaneko et al. [34], and 

improved by Topcu and Soyer [35]. 

 

 

4. ORDERING FOR WELL-STRUCTURED MATRICES 
 

After sparsity has been achieved for the structural matrices, the non-zero entries should be 

generated such that the corresponding matrix has a suitable pattern. For example, the matrix 

in question can be made banded for Gaussian elimination, the profile can be minimized for 

the skyline solution, or the front-width can be minimized for the frontal solution. Of course, 

there are other suitable patterns for symmetric and regular structures. For the force method, 

the selected cycles are ordered to obtain banded flexibility matrices. 

The first direct method for bandwidth reduction was recognized by the graph theorist 

Frank Harary in 1967. He posed the following question: 
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For a graph S with N(S) nodes, how can labels 1, 2, ..., N(S) be assigned to the nodes 

such that the maximum absolute value of the difference between the labels of all pairs of the 

adjacent nodes is minimized? In the following we will address this question in detail. 
 

4.1. Early Developments 

Cuthill and McKee [36] developed the first graph-theoretical method for reducing the 

bandwidth of stiffness matrices. In their work, a level structure was used which was called 

the "spanning tree" of a structure. Kaveh’s interest in bandwidth reduction was motivated by 

his interest in generating and ordering the elements of cycle bases, in order to reduce the 

bandwidth of the flexibility matrices. For this purpose a shortest route tree (SRT) was 

utilized. The application of this method has been extended to the elements of a cutset basis 

in order to reduce the bandwidth of stiffness matrices. It was subsequently observed that 

there is a close relation between Cuthill-McKee´s level structure and the Kaveh´s SRT [37-

39]. Multiple shortest route trees are utilized for bandwidth reduction [40], and a 

connectivity coordinate system is defined for performing nodal ordering [41]. However, 

there is a difference between these two types of trees in that an SRT is an optimizer and 

contains additional information about the connectivity properties of the corresponding 

structure. 

A matrix A is called banded, if all its non-zero entries are confined within a band, formed 

by diagonals parallel to the main diagonal. Thus, Aij = 0  when |i − j| > b, and Ak,k-b ≠ 0 or 

Ak,k+b ≠ 0 for at least one value of k. Here, b is the half-bandwidth and 2b+1 is known as the 

bandwidth of A. These two values are alternately called the bandwidth of the matrix A. 
 

4.2. Shortest Route Tree 

An SRT of S rooted at O, as shown in Fig. 14(a), denoted by SRTO, has the following 

characteristics:  

w(C0) = 1, w(C1) = 2, w(C2) = 3, w(C3) = 4, w(C4) = 5, w(C5) = 5, w(C6) = 4, w(C7) = 3, 

w(C8) = 2 and w(C9) = 1. Hence h(SRTO) = 9 and w(SRTO) = 5.  

 

For the same graph, an SRT rooted at O´, as shown in Fig. 14(b), leads to h(SRTO’) = 5 

and w(SRTO’) = 9.  

 

An SRT partitions the node set of S into subsets according to their distance from the 

root. Each subset is known a contour (or level) of the SRT, denoted by Ci. The contours of 

an SRT have the following properties: 
 

   Adj (Ci)  Ci-1  Ci+1,        1 < i < m  

  Adj (C1)  C2,                                                                            (5) 

   Adj (Cm)  Cm-1.  

 

The number of nodes in each contour is called the width of that contour. The largest 

width of the contours of an SRT is called the width of the SRT rooted at the starting node O, 

denoted by w(SRTO). This number is known as the width number of SRT rooted from O. 

The number of contours of an SRT (except the starting node contour) is the height of the tree 
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denoted by h(SRTO). The longest SRT is the one having maximal height and the narrowest 

SRT is the one which corresponds to minimal width. 
 

4.3. Nodal Numbering 

Once the starting node and the corresponding SRT is generated, back track from a node 

of minimum valency and generate a path known as the transversal containing N1, N2, N3, …, 

Nk. 

 

Step 1: Number N1 as "1".  

 

Step 2: N2 is assigned as number "2" and an SR subtree is generated from N2, 

numbering the nodes of C2 in the order of their occurrence in this SR subtree.  

 

Step 3: The process of Step 2 is repeated for numbering the nodes of C3, C4, ... , Cm, 

sequentially using N3, N4, ... , Nm as the starting nodes of SR subtrees, until all the nodes 

of S are numbered.  

 

Now the numbering can be reversed, in a way similar to that of the Reverse Cuthill-

McKee algorithm, for possible reduction of fill-ins in the process of Gaussian elimination. 
 

 4.4. Kaveh’s 4-step Algorithm 

The following four-step algorithm was developed by Kaveh for the nodal ordering of graphs 

leading to banded node adjacency matrices. This method can directly be used for nodal 

ordering of skeletal structures resulting in banded stiffness matrices.  

 

1. Finding a suitable starting node;  

2. Decomposing the node set of S into ordered subsets (contours);  

3. Selecting a connected path (transversal) containing one representative node from 

each contour;  

4. Ordering the nodes within each contour, sequentially, to obtain the final nodal 

numbering of S.  

 

A graph model is considered as shown in Fig. 14(a). First a good starting node A is 

found, and the corresponding SRTs are depicted in Fig. 14(b). A transversal is selected as 

shown in bold lines, Fig. 14(c). Then nodes are numbered contour by contour, employing the 

representative nodes as the starting nodes of SR subtrees Fig. 14(d).  

 

4.5. Ordering for Profile Reduction 

In order to proceed with main algorithms for profile reduction, some definitions will 

now be stated in the following:  

The profile of an nn square matrix A is defined as, 
 

 (6) 
=

=
N

i

i ,bP
1



OPTIMAL ANALYSIS OF SKELETAL STRUCTURES VIA FORCE METHOD … 

  

349 

where the row bandwidth, bi, for row i is defined as the number of inclusive entries from 

the first non-zero element in the row to the (i+1)-th entry. 
 

 
(a)                                                         (b) 

 
(c )                                                           (d) 

Figure 14: Steps of ordering showing the selected transversal 

 

The numbering and control of nodes in the priority queue are carried out through the 

assignment of status, based on the numbering strategy of King [42]  

The nodes in the King’s strategy can be categorized more formally as follows:  

Prior to the numbering all the nodes of a graph model G of the considered FEM are 

assigned inactive status. When a node of G is inserted in the priority queue, it is assigned 

preactive status. After a node is numbered, it is assigned postactive status. Nodes which are 

adjacent to a postactive node and do not have postactive status are defined as having active 

status. King´s algorithm has been generalized by Sloan through introducing a priority queue 

to control the order to be followed in the numbering of the nodes, Fig. 15. This algorithm 

consists of the following two phases:  
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Figure 15: Definition used for Sloan’s algorithm 

 
The priority function in Sloan’s method [43,44] is generalized by Kaveh and Rahimi 

Bonderabady [45] considering additional vectors known as vectors of the graph parameters, 

Kaveh [46].  
 


=

=
p

1i
,

ii
w  v      (8)  

where   is the priority function, vi (i=1, … , p) are the normalized Ritz vectors 

representing the graph parameters, and wi (i=1, … , p) are the coefficients of the Ritz vectors 

(Ritz coordinates) which are unknowns, and p is the number of parameters being employed. 

In this paper we set p=5 and v1 - v5 vectors are selected as: 

 

v1 contains the degrees of the nodes,  

v2  comprises of the 1-weighted degrees of the nodes, and  

v3 and v4 are distances of the nodes from two pseudo-peripheral nodes, and  

v5 contains the 2-weighted degrees of the nodes of the graph [45]. 

 

The k-weighted degree of a node ni is defined as the sum of the degrees of all nodes in a 

distance k from ni. Here, k=1 and 2 are used, however, higher values of k may also be 

considered. 

The ideas presented for nodal number are general and are easily extended to finite 

element nodal and element ordering, cycle and –cycle ordering, and substructure ordering 

[47-51]. 

 

5. FORMATION OF WELL-CONDITIONED STRUCTURAL MATRICES 
 

Shah studied the ill-conditioning of stiffness matrices for the displacement method, where he 

suggested methods for improving the conditioning of stiffness matrices. A mathematical 

investigation of matrix error analysis is that of the Rosanoff and Ginsburg. In their work, it 

was shown that numerically unstable equations may arise in physically stable problems. 

Thus, the need for the repeated recalculation of matrix conditioning numbers associated with 
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various patterns of formulation is emphasized. The effect of substructuring on the 

conditioning of stiffness matrices, was investigated by Grooms and Rowe [52], who found 

out that substructuring does not significantly influence the solution accuracy for ill-

conditioned systems. Filho [53] used an orthogonalization approach for the best conditioning 

of flexibility and stiffness matrices; however, this can be an impractical approach for large 

and complex structures. 

 

5.1. Condition Numbers 

For measuring the conditioning of a matrix, different numbers (norms) are available 

inliterature. In the following, three simple conditioning numbers utilized in structures are 

provided. 

 

5.1.1. Condition Number 1: Ratio of largest and smallest eigenvalues 

A common condition number for matrices is | max | / | min |, with max being the 

eigenvalue of the largest modulus and min is the eigenvalue of the least modulus as defined 

in the following (Rosanoff and Ginsburg [54]):  

The ratio of the extreme eigenvalues of a matrix | max | / | min | can be taken as its 

condition number. It can also be shown that, the logarithm to the base ten of this condition 

number, is roughly proportional to the maximum number of significant figures lost in 

inversion or in the solution of simultaneous equations. Therefore, the number of good digits 

in the solution, g, is evaluated by: 
 

g = p − log( |  max | / |  min |) = p −  PL                                             (9) 

5.1.2. Condition Number 2: The ratio of determinants 

Since the best conditioned matrix for inversion is a diagonal one, the following 

parameter may also be adopted as a practical approach to use for the conditioning of a 

matrix A. Define 
 

ε = det [A] - det [Aii],                                                             (11) 

 

where [Aii] is a diagonal matrix consisting of the diagonal entries of [A] and “det” is 

used for determinant. 

The value of ε approaches zero for an ideally conditioned matrix. Therefore, the 

following condition number, PDET, can be employed: 
 

PDET = det [A] / det [Aii]                                                      (12) 

 

PDET should approach unity, for an ideally conditioned matrix. This condition number 

is simple and very easy to calculate. 
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5.1.3. Condition Number 3: Determinant of a row-normalized matrix 

A simple and workable measure of conditioning of a set of equations is to evaluate the 

determinant of the row-normalized matrix of the coefficients of the set.  

The determinant of the row-normalized A, denoted by PN, is a good measure for the 

conditioning of A. Obviously, the magnitude of this determinant lies in the range, 
 

  0 < PN ≤ 1,                                                                     (10) 

 

since A is necessarily positive definite. The matrix with perfect conditioning has PN = 1, 

that occurs in the case of orthogonal or diagonal matrices. 

 

5.2. Weighted Graph and an Admissible Member 

The relative stiffnesses (or flexibilities) of the members of a structure can be considered as 

positive integers associated with the members of the graph model of a structure, resulting in 

a weighted graph as 

 ),(2k)m(W z
3

z
41iii ++==  (13) 

where:                      
3

z
4

z
31

L

EI12
  and  

L

EI4
   ,

L

EA
=== .

 

A different weight employing the square roots of the diagonal entries of 
imk  has also 

been used: 

 ].)()()[(2k)m(W 2/1z
3

2/1z
4

2/1
1iii ++==  (14 ) 

Other weight functions may be defined for representing the relative stiffness of the 

members of S, as appropriate. 

Definition: Let the weight of members m1, m2, ..., mM(S) be defined by W(m1), W(m2),..., 

W(mM(S)), respectively. A member mi is called F-admissible if, 

 
=


)S(M

1j

j
i

)S(M

)m(W1
)m(W , (15) 

where  is an integer number which can be taken as 2,3,.…Here =2 is used; however, a 

complete study utilizing other values of  is required. If a member is not F-admissible, it is 

called F-inadmissible or S-admissible. 

 

5.3. Optimally Conditioned Cycle Bases 

In order to obtain optimally conditioned flexibility matrices, special static bases, 

correspondingly cycle bases possessing particular properties, should be selected. 

A cycle basis is defined as an optimally conditioned cycle basis if: 
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(a) It is an optimal cycle basis, i.e. the number of non-zero entries of the corresponding cycle 

adjacency matrix is minimum, leading to a maximal sparsity of the flexibility matrix. 

(b)The members of greatest weight of S are included in the overlaps of the cycles; i.e. the 

off-diagonal terms of the corresponding flexibility matrix have the smallest possible 

magnitudes. 

A weighted graph may have more than one optimal cycle basis. The one satisfying 

condition (b) is optimally conditioned. However, if no such a cycle basis exists, then a 

compromise should be found in satisfying conditions (a) and (b). In other words, a basis 

should be selected which partially satisfies both conditions. Since there is no algorithm for 

the formation of an optimal cycle basis, one should look only for a suboptimally conditioned 

cycle basis. 

 

Example: Consider a 33 grid as shown in Fig. 16(a), with the relative weights of the 

members being encircled. An optimal cycle basis of S contains 9 regional cycles (mesh 

basis) and corresponds to:  

1222122111)CC(LL
8

1i
1i

i
T =+++++++==

=
+

. 

The weight of the members contained in the overlaps is determined as,  

,4533112121022)CC(WW
8

1i
1i

i
T =+++++++==

=
+  

where LT and WT are the length and weight of the overlaps of the selected cycles, 

respectively. 

A suboptimal cycle basis of S is illustrated in Fig. 16(c) for which: 

.1844322111)CC(LL
8

1i
1i

i'
1i =+++++++==

=
+=   

The weight of the members contained in the overlaps is calculated as: 

.8416161412121022)CC(WW
8

1i
1i

i'
1i =+++++++==

=
+=  

The weight of the overlaps of the selected cycles is considerably increased at the expense of 

some increase of their lengths, hence some decrease in the sparsity of its cycle adjacency 

matrix. Obviously WT can be further increased; however, the decrease of sparsity will 

significantly influence the optimality of the cycle basis. 

In this structure, the members of weight 1 are inadmissible according to the definition of 

the previous section, since 43.1
24

69

2

1
1 = . 
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(a)  A weighted graph                          (b)  An optimal cycle basis of S. 

 
(c)   A suboptimally conditioned cycle basis 

Figure16: A single-layer rigid-jointed grid S. 

5.4. Formulation of the Conditioning Problem 

The problem of selecting an optimally conditioned cycle basis can be formulated in the 

mathematical form as 


−

=
+

1)S(b

1i
1i

i
1

),CC(LMin      (16) 

and 


−

=
+

1)S(b

1i
1i

i
1

),CC(WMax      (17) 

Here S is obtained from S by a sequence of elementary contractions, where all the 

existing paths in S are replaced by single members [7] and j

i

1j

i CC
=
= . 
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As can be observed, the problem is a multi-objective optimization problem, and the 

following algorithms are designed such that both objective functions are partially satisfied 

simultaneously, i.e. a compromise is obtained. 

 

5.5.  Suboptimally Conditioned Cycle Bases 

In this section an algorithm is developed for the formation of suboptimally conditioned cycle 

bases of weighted graphs. On each selected cycle, for planar frames three, and for space 

frames six self-equilibrating stress systems are constructed. The condition number of the 

flexibility matrix corresponding to the selected static basis is obtained using the methods of 

Section 5.1. 

Algorithm: This algorithm utilizes the chords of a special spanning tree to guaranty the 

independence of the selected cycles. To avoid the inclusion of inadmissible chords in the 

intersections of the cycles, such chords are not added to the set of members to be utilized in 

the formation of the cycles of S. 

 

Step 1: Select the pseudo-centre "O" of S with a graph or algebraic graph theoretical 

method. 

 

Step 2: Generate an SRT employing the members of highest weights, i.e. 

2.1 Assign "1" to the other ends of all the members incident with O and 

2.2  Find all members incident with nodes denoted by "1" and order them in 

ascending magnitude of their weights; 

2.3  Select the tree members from the above ordered members, assigning "2" to the 

other ends. 

 

Step 3: Repeat Step 2 as many times as needed until all the nodes of S are spanned and an 

SRT is formed. 

 

Step 4: in this step the members incident with "1" should be ordered in ascending magnitude 

and the members of maximal weight are utilized as the chord of the first minimal length 

cycle. In case this chord is F-admissible, then it is added to the list of the tree members, and 

denoted by Tc. 

 

Step 5:  The second shortest length cycle should be generated on the second maximal weight 

member incident with "1" employing the members of Tc. Again add the chord to Tc if it is F-

admissible. This process should be continued until all the chords which are incident with the 

nodes labelled as "1" are utilized. 

 

Step 6:  Repeat Steps 4 and 5 for all the nodes that are labelled by "2". Tthis process should 

be repeated sequentially for all the nodes labelled by 3, 4, ... , k, until a complete cycle basis 

is formed. 

The above algorithm generates suboptimally conditioned cycle bases, and has the the 

following advantages compared to using fundamental cycle bases:  

(a) The starting node is at the centre or pseudo-centre of S limits the length of the 

generated cycles. 
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(b) Employing the utilized chords in the formation of cycles, further reduces the length 

of the selected cycles. 

(c) Avoiding the addition of F-inadmissible chords results in the inclusion of weak 

members in the overlaps of the cycles. 

(d) Using the members with the highest weight in each stage of forming an SRT results 

in the weaker members as candidates for chords, that can be excluded because of 

inadmissibility. 

One can select a spanning tree of maximal weight employing the Greedy Algorithm in 

place of an SRT of maximal weight with respect to the centre node of S; however, in 

general, longer cycles will then be generated corresponding to a less sparse cycle adjacency 

matrix. 

A further improvement can be achieved if comparison is made among the centre node 

(or nodes) and adjacent nodes to choose a node of higher average weight as a starting node. 

The average weight of a node is taken as the sum of the weights of the members incident 

with ni / deg ni. This improvement is because of including all the members of the root node 

in Tc. 

For other efficient methods of selecting well-conditioned cycle basis one can refer to 

[19]. For the displacement method a special cut set basis will be needed as described in [20]. 
 

 

6. SWIFT ANALYSIS OF SYMMETRIC AND REGULAR STRUCTURES 
 

For any given structure, if the corresponding structural matrices are well conditioned, or 

their study is ignored, then only sparsity and well-structuring become the criterions for 

optimality. In this case, the optimal analysis is termed as “a swift analysis”. Many efficient 

methods are presented for composition and decomposition of large and complex structures 

by Kaveh et al. [55]. In the later reference many efficient algorithms are provided for 

symmetric, near symmetric, and regular and near regular structures. 

Symmetry is studied using canonical forms in matrices. Examples are studied in the 

work of Kaveh and Sayarinejad [56-58] for graph problems, dynamics and stability of frame 

structures in the work of Kaveh and Salimbahrami [59-61] and analysis of truss structures by 

Kaveh and Sharyari [62-64]. Ideas are generalized to general symmetries and regular graphs. 

In relation with this problem graph products has been very helpful, Imrich and Klavžar [65], 

Kaveh and Rahami [66], Kaveh and Dadfar [67] and Kaveh et al. [68]. Structures being out 

of symmetry by a small amount are extensively studied in Kaveh et al. [55]. 

The ideas are generalized to finite element models by Cassell [69]. Kaveh [70] Kaveh 

and Massoudi [71-73]. Many interesting stress-based finite element formulations are also 

developed in the work of Maunder and colleagues [74-76]. 

There are other scientific tools for swift analysis of structures. As an example group 

theory is used for symmetric structures. The interested reader may refer to Kaveh and 

Nikbakht [77-79] and Zingoni [80-82]. A combination of graph theory and group theory is 

also utilized to enhance the methods. 

The early research by the present author has been affected by strong research which was 

performed in Sweden by Langefors [83-86], Samuelsson [87] and Wiberg [88]. The previous 
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research of Russopoulos [89] at Greece followed by the extensive fundamental research of 

Argyris et al. [90] on finite element analysis have also been the other sources of motivations. 

Graph theory is extensively used by Kron [91] in electrical engineering and some others 

in structural engineering [92-94]. Other important relevant references in structural analysis 

comprise of [95-98], and well-known books in finite elements methods by [99-101]. 

 

 

7. OPTIMAL ANALYSIS FOR OPTIMAL DESIGN OF STRUCTURES 
 

Optimal analysis has many applications, however, the main application is in optimal design 

of structures where analysis must be performed hundred and sometimes thousands times. An 

example of this application can be found in the recent work of Kaveh and Zaerreza [102]. 

The displacement and force methods are the two well-known structural analyzing 

methods. The computational time required by these methods may enlarge by increasing the 

number of equations that must be solved to obtain the stress or displacement of the nodes. 

The number of equations depends on the degree of kinematical indeterminacy (DKI) and the 

degree of static indeterminacy (DSI). The DKI and DSI values represented the number of 

equations to be solved using the displacement and force methods, respectively. Although the 

time difference is not significant during a single analysis, the time gap grows over the 

optimization process owing to repeated structural analyses. Due to this computational 

overhead, researchers applied the force method instead of the displacement method when the 

optimization problem had less DSI than DKI. For example, Kaveh and Malakouti Rad [103] 

applied the force method for the optimum design of the structures using the hybrid genetic 

algorithm and particle swarm optimization. Kaveh and Rahami [104] applied the force 

method for the optimum design of truss structures.  

Three improved algorithms named the Enhanced Colliding Bodies Optimization 

(ECBO), the Improved Shuffled Jaya Algorithm (IS-Jaya), and the Vibrating Particle 

Systems Statistical Regeneration Mechanism Algorithm (VPS-SRM) are applied to the 

optimum design of the frame structures using the force method. The structures considered in 

this study have lower DSI than DKI, hence, the force method is faster than the displacement 

method. In addition, Kaveh and Zaerreza [102] demonstrate the effectiveness of the force 

method on the structures analyzed in this work. 

Optimal analysis can also be used in the displacement method for optimal design of 

symmetric structures, e.g. the optimal design of cyclically symmetric domes with symmetric 

loading, where the multiplication of a slice of dome in cycle can be utilized for the analysis. 

This reduces the storage and computation time to a great extent, Kaveh [65] and Kaveh et al. 

[55]. 
 

 

8. CONCLUDING REMARKS 
 

This paper is mainly devoted to the optimal analysis of skeletal structures. This review is 

intended to cover the force method, since reviews of the displacement method are 

extensively available. 
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The sparsity of structural matrices is widely studied and the results are used for the 

formation of well-structured and well-conditioned matrices for frame structures. Here, the 

study is limited to a presentation of basic concepts and methods of skeletal structures. For 

efficient computation of frame analysis, different cycle bases are defined and efficient 

algorithms have been developed. However, for truss structures the formulation has been 

limited due to the absence of graph theoretical algorithms, and in such cases algebraic force 

methods has been used. A graph theoretical interpretation is only available for Gaussian 

elimination and it should be extended to other algebraic methods. This could result in an 

advantageous understanding of algebraic force methods. 

Different ordering algorithms are available for the formation of the structural matrices 

with different patterns. However, efficient methods should be developed for the formation of 

well-conditioned structural matrices. 

Optimal analysis is important for optimal design of structures, and is used both for the 

stiffness method analysis of cyclically symmetric structures like domes, and the force 

method analysis when the DSI of a structure is less than its DKI. Different applications can 

be extended to increase the efficiency of analysis and consequently the optimal design when 

metaheuristic algorithms are used. 

 

 
Appendix A 

Basic Definitions from Theory of Graphs 

Graph theory is a branch of mathematics started by Euler [108] as early as 1736. It took 

more than a hundred years before the second important contribution of Kirchhoff [26] had 

been made for the analysis of electric networks. It took another century before the first book 

was published by König [109]. After the Second world war, further books were published on 

graph theory by Ore [110], Tutte [111], Berge [112], Harary [113], and West [114], among 

many others. 

For understanding this paper the reader can refer to concept and definitions from Refs. 

[113,114]. 

Appendix B 

Expansion process is very important and one can find the property of a model in different 

stages of the process of expansion by the following theorem. One can also select subgraphs 

of specified properties such as cycles, -cycles and substructures. Similar theorem exists in 

the algebraic topology (Maunder [115]), however the considered function in the following 

theorem is more general than the first Betti number. 

Union-Intersection Theorem (Kaveh [4,7]): Consider S as the union of q subgraphs S1, S2, 

S3, ... , Sq , where the following functions are defined: 

                                         (S) = aM(S) + bN(S) +c0(S), 

                                         (Si) = aM(Si) + bN(Si) + c0(Si)           i = 1,2,...,q 
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            (Ai) = aM(Ai) + bN(Ai) + c0(Ai)         i = 2,3,...,q, 

Here, Ai = Si−1  Si and Si−1 = S1 S2  ...  Si-1 and (S) is a function defining the degree of 

static indeterminacy (S) or kinematical indeterminacy (S) for a structure S. It can easily be 

proved that 

 
[(S) − c0(S)] = 

=

−
q

1i
i0i )]S(c)S([ −

=

−
q

2i
i0i )]A(c)A([  . (B-1) 

Special Case: In the expansion process if S and each considered subgraph (Si for i = 1,...,q) 

is connected (non-disjoint), then Eq. (B-1) will be simplified as,  

 
(S) = 

=


q

1i
i )S(  −

=


q

2i
i )(A , (B-2) 

In this relation 

 (Ai) = aM(Ai) +bN(Ai) + c. 

In order to calculate the DSI and DKI of a complex structure or a structure having a large 

number of members, one prefers to select a repeated unit of the structure and joins these 

units sequentially in a connected form. Therefore, Eq. (B-2) will be applicable in place of 

Eq. (B-1) for obtaining the overall property of the structure. 
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